Design And Construction Of An Electronic Card Lock System

The design and construction of an electronic card lock system involve the integration of advanced electronic components and mechanisms to provide secure access control. This system typically comprises a reader unit, which recognizes encoded data stored on a card, and a locking mechanism, which grants or denies access based on the information received. The reader unit utilizes RFID (Radio-Frequency Identification) or NFC (Near Field Communication) technology to communicate with the card, authenticating its validity within the system. Additionally, a microcontroller processes the data received from the reader and triggers the locking mechanism accordingly, either by engaging or disengaging the lock mechanism. To enhance security, encryption algorithms may be implemented to safeguard the communication between the reader and the card, preventing unauthorized access attempts. Furthermore, the construction of such a system involves careful consideration of durability, weatherproofing (if applicable for outdoor use), and power management to ensure reliable operation. Through meticulous design and construction, an electronic card lock system offers a sophisticated solution for access control in various applications, ranging from residential and commercial buildings to sensitive facilities, thereby enhancing security and convenience for users while mitigating the risk of unauthorized access.

ABSTRACT

Traditional lock systems using mechanical lock and key mechanism are being replaced by new advanced techniques of locking system. These techniques are an integration of mechanical and electronic devices and highly intelligent. One of the prominent features of these innovative lock systems is their simplicity and high efficiency.

This device can be used as a lock for important electronic/electrical appliances. When card is inserted inside its mechanism, depending upon the position of punched hole on the card, a particular appliance would be switched on. Such an automatic lock system consists of electronic control assembly which controls the output load through a smart card (RFID card). This output load can be a motor or a lamp or any other mechanical/electrical load.

Here we develop an electronic card lock system using arduino, which provides control to the actuating the load. It is a simple embedded system with input from the RFID card inserted accordingly.

TABLE OF CONTENTS

TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWELDGEMENT

ABSTRACT

TABLE OF CONTENT

CHAPTER ONE

  • INTRODUCTION
  • BACKGROUND OF THE PROJECT
  • AIM OF THE PROJECT
  • OBJECTIVE OF THE PROJECT
  • PURPOSE OF THE PROJECT
  • SIGNIFICANCE OF THE PROJECT
  • STATEMENT OF THE PROBLEMS
  • APPLICATION OF THE PROJECT
  • PROJECT ORGANISATION

CHAPTER TWO

2.0     LITERATURE REVIEW
2.1     REVIEW OF RADIO-FREQUENCY IDENTIFICATION
2.2     HISTORICAL BACKGROUND OF RADIO-FREQUENCY IDENTIFICATION
2.3   DESIGN OF RADIO-FREQUENCY IDENTIFICATION

CHAPTER THREE

3.0      CONSTRUCTION METHODOLOGY

3.1     SYSTEM BLOCK DIAGRAM

3.2     FUNCTIONS OF THE SYSTEM BLOCK

3.3     SYSTEM OPERATION

3.4      CIRCUIT DIAGRAM OF SYSTEM

3.5      SYSTEM CIRCUIT DESCRIPTION AND OPERATION

3.6      PROGRAM EXPLANATION

3.7      PROGRAM CODE

3.8      POWER SUPPLY UNIT

3.9      MICROCONTROLLER UNIT

CHAPTER FOUR

RESULT ANALYSIS

4.0      CONSTRUCTION PROCEDURE AND TESTING

4.1      CASING AND PACKAGING

4.2      ASSEMBLING OF SECTIONS

4.3      TESTING AND RESULT OF SYSTEM

4.4      DESIGN CALCULATION

4.5      PRACTICAL LIMITATIONS

CHAPTER FIVE

5.1      CONCLUSION

5.2      RECOMMENDATION

5.3      REFERENCES

CHAPTER ONE

1.1                                                        INTRODUCTION

The security situation in many parts of the world today leaves much to be desired. In Nigeria particularly, the prevalence of armed robbers and other groups that constitute nuisance to the society has led to the loss of lives and properties worth millions of dollars. Many of the attacks that led to the loss have occurred in the homes or in guarded compounds and the attacks took place in spite of the existence of seemingly impregnable security gates that were designed to ward off intruders. The needs for electronically controlled gates that have superior security features to those operated manually thus exist and have been on the increase in recent times.

This device consist of a card reader, Electromagnetic lock or door strike. Power supply system and a push button. To use this system, the authorized card user when approach the reader will just have to use the cardkey or pin number or insert the RFID card depending on the design. Once the correct data is present to the reader system, through an interface the locking / door holding devices will be de-energized and the door can be push open. From inside of building to exit the building the person will just have to press a door lock release switch and the system will release the lock. A power back-up unit will be incorporated into most access control system, this will act as standby power in the event there is a power outage. For certain safety requirement a break glass is incorporated into the system for emergency release of the door.

This device is better than the password based access controlled in the sense that passwords belonging to one individual can be learned by another without the owner’s permission. This device uses Radio frequency identification Radio frequency identification (RFID) has been used in conjunction with arduino to control gates. This system is only required to close and open gates and has a very limited security feature.

The system that has been designed in this work uses arduino, radio-frequency transmitter/receiver pair as major components, and a rfid reader. Some advantages of the system include:

(ii) It operates as a stand-alone system and does not require a network provider for reception of signals.

(ii) The use of an rfid card to generate the code or by inserting the card necessary for the opening and closing of the gate enhances the security of the system since it requires very many trials by an intruder to succeed in breaking into the system.

(iii)The features of the system that are controlled by the firmware resident in the memory of the arduino can be easily improved for future upgrade.

(iv) it has only one access controlled unit, that is, using RFID card

1.2                                             OBJECTIVE OF THE PROJECT

The main objective of this project is to develop an embedded system, which is used to verify and authenticate the authorized person entering a restricted room or area. This verification is done via RFID card.

1.3                                              PURPOSE OF THE PROJECT

Main purpose of the Access Control is to begin with – protect physical, IP and human assets. This requires restricting unauthorized people from reaching pre-defined areas. This security can be achieved by using RFID card when the user approaches the entrance door where the access controlled door is been used.

1.4                                              BENEFITS OF THE PROJECT

  • Control Access based on User, Zone and Time
  • Secure Sensitive Areas with Advanced Access Control Features
  • IP based Architecture to Enhance Reliability and Scalability
  • Centralized Monitoring and Control of Multiple Devices and Locations
  • Get Real-time Notification on Exceptions

1.5                                         SIGNIFICANCE OF THE PROJECT

  • This project provides security
  • Power consumption is less
  • Used commonly available components
  • Project is simple and easy

1.6                                         APPLICATIONS OF THE PROJECT

·        This simple circuit can be used at residential places to ensure better safety.

  • It can be used at organizations to ensure authorized access to highly secured places.
  • With a slight modification this Project can be used to control the switching of loads through RFID card.
1.7                                                 SCOPE OF THE PROJECT

The main component in the circuit is the controller, RFID transmitter/receiver, and rfid reader.

RFID based security system using Arduino project has a RFID reader attached to it. RFID reader reads the unique alphanumeric code of RFID tags and sends it to Arduino. Then Arduino detects whether RFID card is valid or invalid. If the card is invalid then system turns on the buzzer. However, if the RFID card shown by the user is valid then the DC motor is turned on and at the same time Relay is turned on. DC Motor is shown as a demo of door lock (latch) opening. Also, Relay is provided as an additional feature so that user can connect any electromagnetic security lock to the system if required.

1.8                                          LIMITATIONS OF THE PROJECT

·        It is a low range circuit, i.e. it is not possible to operate the circuit remotely.
  • If there is no power supply and the battery is not charged, it is not possible to open the door.

1.9                                                  DEFINITION OF TERMS

Secure Area: A designated area in which access into and out of is controlled and can be monitored.

Secure Door: A door in which access through is controlled and can be monitored.

Shielding: Providing electrical isolation for a circuit, component, or wire by enclosing or isolating the circuit, component, or wire with a metal enclosure, plate, or foil that blocks any interfering electrical field.

Short Circuit: An unintentional connection that provides a low resistance path between two points in a circuit or between a point in a circuit and ground. A Short Circuit can drastically affect the operation of a circuit. If excessive current flow results from the Short Circuit, a device may be damaged or ruined.

Signature Verification: A biometric identification method using a person’s signature characteristics (writing speed, pen pressure, shape of loops, etc.) to identify that person.

Spike: A voltage peak of high amplitude and short duration.

Smart Card: An identification card or access control card with a built-in integrated circuit chip. This gives the card microprocessor memory and intelligence to use for storing data. Also Known As – Chip-In-Card.

Suppression: The addition of a device to an electrical circuit that minimizes or prevents transients from affecting the proper operation of that circuit.

Switch: A device used to either connect or interrupt an electronic circuit.

1.10                                      PROJECT WORK ORGANISATION

The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:

Chapter one of this work is on the introduction to this study. In this chapter, the background, significance, objective limitation and problem of this study were discussed.

Chapter two is on literature review of this study. In this chapter, all the literature pertaining to this work was reviewed.

Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.

Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.

Chapter five is on conclusion, recommendation and references.

 

SIMILAR PROJECT TOPICS:

SHARE PROJECT MATERIALS ON:

More About Design And Construction Of An Electronic Card Lock System Material

Author: See the writer of ‘Design And Construction Of An Electronic Card Lock System’ name on the first page of the downloaded file.

Acknowledgement: You must acknowledge and reference the writer of Design And Construction Of An Electronic Card Lock System on your acknowledgement and reference pages respectively.

Upload Similar: You can upload any content similar to Design And Construction Of An Electronic Card Lock System and get paid when someone downloaded the material.

Download: Click on “Donate & Download” under this Design And Construction Of An Electronic Card Lock System Title and you will be redirected to download page after the donation or chat with Us for alternative methods.

Content Size: Design And Construction Of An Electronic Card Lock System contains , and .