Design And Construction Of Solar Charge Controller Of 24V/60A

The design and construction of a 24V/60A solar charge controller involves the integration of advanced electronic components and innovative engineering techniques to efficiently manage the charging process of solar panels. This controller regulates the voltage and current from the solar panels to ensure optimal charging of the 24V battery system, safeguarding it against overcharging, over-discharging, and short circuits. Incorporating high-quality MOSFETs, voltage regulators, and microcontrollers, the controller maximizes the conversion efficiency of solar energy into electrical power while offering robust protection mechanisms. Additionally, the construction involves careful consideration of thermal management to mitigate overheating risks, as well as weatherproofing measures for outdoor installations. By combining cutting-edge technology with meticulous craftsmanship, this solar charge controller empowers renewable energy systems with reliable performance and long-term sustainability, contributing to a greener and more resilient energy infrastructure.

ABSTRACT

Solar charge controller limits the rate at which electric current is added to or drawn from solar panel to electric batteries. It prevents overcharging and may protect against overvoltage, which can reduce battery performance or lifespan, and may pose a safety risk. It may also prevent completely draining (“deep discharging”) a battery, or perform controlled discharges, depending on the battery technology, to protect battery life. The terms “charge controller” or “charge regulator” may refer to either a stand-alone device, or to control circuitry integrated within a battery pack, solar battery-powered device, or battery charger.

TABLE OF CONTENTS

TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

TABLE OF CONTENT

CHAPTER ONE

1.0      INTRODUCTION

1.1      BACKGROUND OF THE PROJECT

1.2      PROBLEMSTATEMENT

1.3      OBJECTIVE OF THE PROJECT

1.4      SCOPE OF THE PROJECT

1.5      PURPOSE OF THE PROJECT

1.6     SIGNIFICANCE OF THE PROJECT

1.7      PROBLEM OF THE PROJECT

1.8      LIMITATION OF THE PROJECT

1.9      PROJECT ORGANISATION

CHAPTER TWO

2.0     LITERATURE REVIEW

2.1      INTRODUCTION

2.2     REVIEW OF RELATED WORK

2.3     REVIEW OF PHOTOVOLTAIC CHARGE CONTROLLER

2.4      PHOTOVOLTAIC

2.5      DC-DC CONVERTERS

CHAPTER THREE

3.0     CONSTRUCTION METHODOLOGY

3.1     BLOCK DIAGRAM OF THE SYSTEM

3.2     SYSTEM CIRCUIT DIAGRAM

3.3      CIRCUIT OPERATION

3.4      SOLAR CHARGE CONTROLLER SPECIFICATIONS

3.5     DESCRIPTION OF COMPONENTS USED

CHAPTER FOUR

RESULT ANALYSIS

4.0      TESTING AND RESULT ANALYSIS

4.1      INSTALLATION OF THE COMPLET DESIGN

4.2      CONSTRUCTION PROCEDURE

4.3      CASING AND PACKAGING

4.4      ASSEMBLING OF SECTIONS

4.5      TESTING OF SYSTEM OPERATION

4.6      PROBLEM ENCOUNTERED

CHAPTER FIVE

5.0      CONCLUSION

5.1      RECOMMENDATION

5.3      REFERENCES

CHAPTER ONE

1.0                                                        INTRODUCTION

1.1                                           BACKGROUND OF THE STUDY

Energy plays vital role for development in all sectors. With depletion of fossil fuels used for power generation and increase in demand for power, the gap between supply and demand is becoming more. Renewable energy sources can only provide solution to face this energy crisis. Out of renewable energy options, solar energy is the most potential source for all tropical countries. Sun radiates 180 billion MW of energy over Earth Just one hour of this energy could meet power needs of entire planet for a year. India receives 5000 Trillion KWhrs of energy from SUN per annum. This energy is clean, pollution free and inexhaustible and is available free and in abundance. Basically the components involved in solar system are PV panel, DC-DC Converter, Battery, Inverter.

The PV panel produces electrical voltage/current from solar energy. This solar panel can produce more than the rated voltage to the battery which can be dangerous to the battery due to the high radiation of the sun. In order to tackle the present energy crisis it is necessary to develop an efficient manner in which power has to be extracted from the incoming solar radiation. The use of the newest power control mechanisms called solar charge controller was invented.

Solar Charge controller is basically a voltage and/or current regulator to keep batteries from overcharging.

Solar Charge Controller is fully configurable and developed to meet the highest industry standards to ensure maximal efficiency in retrieving energy from any PV system. When connected to solar panels and batteries, the solar charge controller automatically charges the batteries in an optimal way with all the available solar power. Solar charger controller’s sophisticated three stage charge control system can be configured to optimize charge parameters to precise battery requirements. The unit is fully protected against voltage transients, over temperature, over current, reverse battery and reverse PV connections. An automatic current limit feature allows use of the full capability without worrying about overload from excessive current, voltage or amp-hour based load control.

1.2                                                  PROBLEM STATEMENT

Solar panel supplies energy to the battery according to the intensity of light which means it can supply voltage more than the rated voltage of the battery which can cause damage to the battery. Solar charge controller is used to overcome this problem. Solar charge controller is used for correcting and detecting variations in the current-voltage characteristics of solar panel. By using solar charge controller, we can use solar panel with a voltage output greater than the battery system operating voltage. System’s complexity can be reduced by using solar charge controller as it has high efficiency. It can be applied for using with multiple energy sources such as water turbines or wind-power turbines, and so on. The solar panel’s output power is used for controlling DC-DC converter directly.

1.3                                   AIM AND OBJECTIVE OF THE PROJECT

The main aim of this work is to build a solar charge controlling device of 24v and 60A. At the end of this work the following objective shall be achieved:

  1. An MPPT solar charge controller shall be built.
  2. This device will have the capacity to maintain the required voltage magnitude coming from solar panel necessary for the load or control the battery voltage supplied from solar panel.

1.4                                                 SCOPE OF THE PROJECT

The main scope of project is, the photovoltaic cells are converting the sunlight in to electricity a charge controller is used. PV cells are bundled together in modules or panels to produce higher voltages and increased power. As the sunlight varies in intensity the electricity so generated usually charges through the charge a set of batteries for storing the energy. Controller in this project is used: To generate the variable PWM for DC-DC CONVERTER, to control the battery voltage and Controlling the load variation.

1.5                                         SIGNIFICANCE OF THE PROJECT

Solar Charge controller is basically a voltage and/or current regulator to keep batteries from overcharging. It regulates the voltage and current coming from the solar panels going to the battery. 24v solar panel can be achieved by connecting two 12v panels in series. Most “24 volt” panels put out about 32 to 40 volts, so if there is no regulation the batteries will be damaged from overcharging.

Solar Charge controller may also monitor battery temperature to prevent overheating. Some charge controller systems also display data, transmit data to remote displays, and data logging to track electric flow over time.

1.6                                          APPLICATION OF THE PROJECT

Solar Charge controller circuits are used for rechargeable electronic devices such as cell phones, laptop computers, portable audio players, and uninterruptible power supplies, as well as for larger battery systems found in electric vehicles and orbiting space satellites.

1.7                                              PURPOSE OF THE PROJECT

Use of batteries with solar panels is usually not good. So to avoid failure of batteries before time solar charge controller is used. For example you have a 24 volt battery and you want to charge it with 24 volt solar panel. 24 volt solar panel outputs 36-40 volt. So these 36-40 volt may damage battery due to overcharging, because batteries maximum charging voltage is usually between 27-28 volt. To avoid this issue we need to develop a regulator which can control flow of charge from solar panel towards battery. Solar charge controller is used for this purpose.

1.8                                         METHODOLOGY

To achieve the aim and objectives of this work, the following are the steps involved:

  1. Study of the previous work on the project so as to improve it efficiency.
  2. Draw a block diagram.
  • Test for continuity of components and devices,
  1. Design and calculation for the device was carried out.
  2. Studying of various component used in circuit.
  3. Construction of the circuit was carried out.
  • Finally, the whole device was cased and final test was carried out.

1.9                                        PROJECT WORK ORGANISATION

The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:

Chapter one of this work is on the introduction to a solar charge controller. In this chapter, the background, significance, objective limitation and problem of solar charge controller were discussed.

Chapter two is on literature review of a solar charge controller. In this chapter, all the literature pertaining to this work was reviewed.

Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.

Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.

Chapter five is on conclusion, recommendation and references.

 

SHARE PROJECT MATERIALS ON:

More About Design And Construction Of Solar Charge Controller Of 24V/60A Material

Author: See the writer of ‘Design And Construction Of Solar Charge Controller Of 24V/60A’ name on the first page of the downloaded file.

Acknowledgement: You must acknowledge and reference the writer of Design And Construction Of Solar Charge Controller Of 24V/60A on your acknowledgement and reference pages respectively.

Upload Similar: You can upload any content similar to Design And Construction Of Solar Charge Controller Of 24V/60A and get paid when someone downloaded the material.

Download: Click on “Donate & Download” under this Design And Construction Of Solar Charge Controller Of 24V/60A Title and you will be redirected to download page after the donation or chat with Us for alternative methods.

Content Size: Design And Construction Of Solar Charge Controller Of 24V/60A contains , and .