The Phytochemical And Antimicrobial Studies Of The Methanol Extract Of The Root Of Napoleonaea Heudelotti (A.Juss) (PDF/DOC)
The extracts of the root part of Napoleonaea heudelotii were subjected to phytochemical and anti-microbial studies. Extraction was done by continuous Soxhlet extraction using methanol. The phytochemical screening of the crude methanol extract, chloroform and ethyl acetate fractions revealed the presence of carbohydrate, cardiac glycosides, saponins, steroids, triterpenes, flavanoids and tannins. The result of the antimicrobial screening of the crude methanol extract, ethyl acetate and chloroform fractions showed activity against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Proteus vulgaris, and Candida albicans. However, the chloroformfraction was the most active fraction against the test microoganisms.
The zone of inhibition of the methanol extract ranged between 16 mm and 21 mm, the chloroform fraction ranged between 17 mm and 25 mm while the ethyl acetate fraction ranged between 15 mm and 21 mm. The MIC results of methanol extract, ranged between 12.5 mg/ml and 1.562 mg/ml, chloroform fraction ranged between 12.5 mg/ml and 1.562 mg/ml, while ethyl acetate ranged between 6.25 mg/ml and 1.625 mg/ml. The MBC of methanol extract and chloroform fraction ranged between 12.5 mg/ml and 1.562 mg/ml, while that of ethyl acetate fraction ranged between 6.2 mg/ml and 1.562 mg/ml. The chloroform fraction being the most active fraction was subjected to extensive chromatographic purification; white crystalline solid labelled NHPE were isolated. The structures of the isolated compounds were determined to be a mixture α-amyrin and β-amyrin using 1D and 2D NMR.
1.0 Introduction
Medicinal plants have been identified and used throughout human history. Plants have the ability to synthesize a wide variety of chemical compounds that are used to perform important biological functions, and to defend against attack from predators such as insects, fungi and herbivorous mammals (Babalola, 2009). Chemical compounds in plant mediate their effects on the human body through processes identical to those already well understood for the chemical compounds in conventional drugs; thus herbal medicines do not differ greatly from conventional drugs in terms of how they work. This enables herbal medicines to be as effective as conventional medicines, but also gives them the same potential to cause harmful side effects. Ethnobotany (the study of traditional human uses of plants) is recognized as an effective way to discover future medicines. In 2001, researchers identified 122 compounds used in modern medicine which were derived from ethnomedical plant sources (Babalola, 2009).
Many of the pharmaceuticals currently available to physicians have a long history of use, as herbal remedies, including aspirin, digitalis, quinine and opium. Treatment of diseases is almost universal among non-industrialized societies, and is often more affordable than purchasing expensive modern pharmaceuticals (Beltrame et al., 2002). The World Health Organization (WHO) estimates that 80 percent of the population of some Asian and African countries presently use herbal medicine for some aspect of primary health care (Beltrame et al., 2002). Studies in the United States and Europe have shown that the use of herbal madicine is less common in clinical settings, but has become increasingly more in recent years as scientific evidence about it effectiveness has become more widely available.
Click the button below to INSTANTLY subscribe and download the COMPLETE MATERIAL (PDF/DOC)!
This Study On The Phytochemical And Antimicrobial Studies Of The Methanol Extract Of The Root Of Napoleonaea Heudelotti (A.Juss) Is Relevant To Students And Researchers In Biochemistry
Chemistry
Chemistry Education And Related Fields.