Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller

The design and construction of an automatic car parking slot indicator using a microcontroller represent a sophisticated and innovative solution to address the increasing challenges of urban parking management. This system utilizes a microcontroller, a compact yet powerful electronic device, to automate the monitoring and indication of available parking spaces within a parking facility. The integration of sensors, such as ultrasonic or infrared, allows the microcontroller to detect the presence or absence of vehicles in each parking slot. The collected data is then processed, and the indicator system visually communicates the status of individual parking spaces to drivers, facilitating a more efficient and organized parking experience. This technology not only enhances the convenience for drivers but also contributes to optimizing parking space utilization, addressing the growing demands of urban infrastructure. The deployment of such intelligent parking solutions aligns with the modernization of urban environments and reflects a forward-thinking approach to urban mobility challenges.

ABSTRACT

This System demonstrates a fully automated car parking system. For this purpose we use IR sensors along with motors, LCD display and microcontroller for controlling the system working. Our system consists of an LCD display that is used to demonstrate as a parking gate entrance display. The display displays empty slots to new car arriving at gate of parking area. If no parking space is available the system does not open the gate and displays parking full. If slot is empty system allows car to enter the lot and displays empty slots where user can park. To detect vehicle slot occupancy the system uses IR sensors. Also system uses IR sensors to detect vehicles arriving at parking gates, to open the gates automatically on vehicle arrival. The microcontroller is used to facilitate the working of the entire system

TABLE OF CONTENTS

COVER PAGE

TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWELDGEMENT

ABSTRACT

CHAPTER ONE

  • INTRODUCTION
  • BACKGROUND OF THE PROJECT
  • PROBLEM STATEMENT
  • AIM/OBJECTIVE OF THE PROJECT
  • PURPOSE OF THE PROJECT
  • SIGNIFICANCE OF THE PROJECT
  • APPLICATION OF THE PROJECT
  • LIMITATION OF THE PROJECT
  • BENEFIT OF THE PROJECT
  • METHODOLOGY
  • PROJECT ORGANISATION

CHAPTER TWO

LITERATURE REVIEW

  • OVERVIEW OF THE STUDY
  • REVIEW OF RELATED STUDY
  • DEFINITION CAR PARKING SYSTEM
  • TYPES OF CAR PARKING SYSTEM
  • GENERAL FEATURES OF CAR PARKING SYSTEM
  • PROCESS OF CAR PARKING SYSTEM
  • HISTORICAL BACKGROUND CAR PARKING SYSTEMS
  • DESCRIPTION OF PARKING

CHAPTER THREE

METHODOLOGY

  • BLOCK DIAGRAM
  • SYSTEM DESCRIPTION
  • SYSTEM CIRCUIT DIAGRAM
  • SYSTEM FLOW CHART
  • SYSTEM PROGRAMME CODE
  • DESCRIPTION OF COMPONENTS USED
  • POWER SUPPLY UNIT

CHAPTER FOUR

TEST AND RESULT ANALYSIS

  • CONSTRUCTION PROCEDURE
  • CASING AND PACKAGING
  • ASSEMBLING OF SECTIONS
  • PACKAGING
  • MOUNTING PROCEDURE
  • TESTING

CHAPTER FIVE

  • CONCLUSION
  • RECOMMENDATION
  • REFERENCES

CHAPTER ONE

1.0                                                        INTRODUCTION

1.1                                         BACKGROUND OF THE PROJECT

Now days in many multiplex systems there is a severe problem for car parking systems. There are many lanes for car parking, so to park a car one has to look for the all lanes. Moreover there is a lot of men labor involved for this process for which there is lot of investment. So the need is to develop a system which indicates directly which parking slot is vacant in any lane. The project involves a system including infrared transmitter and receiver in every lane and a LED and LCD display outside the car parking gate. So the person entering parking area can view the LED display and can decide which lane to enter so as to park the car.

Conventionally, car parking systems does not have any intelligent monitoring system. Parking lots are monitored by human beings. All vehicles enter into the parking and waste time for searching for parking slot. Sometimes it creates blockage. Condition become worse when there are multiple parking lanes and each lane have multiple parking slots. Use of automated system for car parking monitoring will reduce the human efforts. Display unit is installed on entrance of parking lot which will show LEDs for all Parking slot and for all parking lanes. Empty slot is indicated by the respective glowing LED.

1.2                                                  PROBLEM STATEMENT

There is always a problem of parking of cars in public places such as worship places, markets, government houses, etc. so to park a car one has to look for the all lanes which wastes time and energy to do such. In some places lot of men are hired to carry out the assignment which costs huge amount of money to pay them. So the need is to develop a system which indicates directly which parking slot is vacant in any lane, this device was invented to solve or perfume this function.

1.3                                                   AIM OF THE PROJECT

The aim of this project is to solve these problems of car parking using automatic car parking slot indicator using microcontroller. The microcontroller serves as a programming tool to run the whole operation, to reduce the cost in terms of requirement such as job opportunity and to increase security. Moreover, this system is faster, flexible and can meet market needs.

1.4                                              PURPOSE OF THE PROJECT

The purpose is to control the number of the car inside it, how to monitor the movement in/out side of the parking lot, how to check whether there is a place inside for more cars or not and the safety to park.

1.5                                                 SCOPE OF THE PROJECT

In the project “Car Parking System” we have shown the concept of an automatic car parking system. As in the modern world everything is going automatic, we have built a system which will automatically sense the entry and exit of cars through the gate and then display the number of cars in the parking lot. Even we can set a maximum capacity of cars by the help of   user interface given in the hardware in the form of switches so that there is no congestion. We have deployed a microcontroller used to sense the movement of cars and check whether there is a capacity for cars to park, then decide the gate either opens or not. It is also possible to open a gate when any car enters in the parking lot or close the door when a car exits from it.

There are two sets of sensors: one is installed on the first gate (entry gate) and the other is installed on another gate (exit gate). When a car arrives at the door, the microcontroller receives the signal from the entry sensors and then checks whether there is a space for the car to be accommodated. Simultaneously, it will display the number of cars present in the parking lot on a LCD screen and opens the gate if there is a space for the car to park. When a car moves out of the parking area, the microcontroller reduces the count displayed on the LCD accordingly and then closes the gate. The sensing of entry and exit of cars is done through infrared transmitters and receivers. Before the door the infrared transmitter is mounted on one side and the receiver is placed directly against the transmitter across the door. When a car arrives, the infrared beam is blocked by the car and the receiver is devoid of infrared rays and its output changes. This change message is sent to the microcontroller and accordingly it increases the count and opens the door if there is some empty position. The procedure for the exit of cars is much similar to that of entry.

1.6                                         SIGNIFICANCE OF THE PROJECT

It will enable the drivers at the exit gate to enter if there is any empty space in the parking and disable them to enter when there is no empty space. It will manage the main parking spaces by alerting the drivers if there are spaces to park in or not. It will provide an automated system that whenever there is no space no one can access the parking and when there is space drivers can access the parking.

In terms of money, this project has two things in   general; namely: It will reduce the number of people needed at the gate to guide drivers.

It will provide a way of getting money for any institution that has this system because it can be put on the market and people use it for their interest like in a commercial sector where an institution has movement of clients that have vehicles and the institution cannot support them at the same time; hence this automated system can be a solution.

1.7                                         APPLICATIONS OF THE PROJECT

This device is used in public places such as:

  1. Garage
  2. Worshipping centres
  • Industries
  1. Business areas

To provide ease, and sense of safety and security of the vehicle in the crowded areas

1.8                                              PROBLEM OF THE PROJECT

  1. There is a greater construction cost per space
  2. Use of redundant systems will result in a greater cost.
  • It may be a bit confusing for unfamiliar users.
  1. There may be a fear of breakdown. The system might malfunction if a sensor gets damaged

1.9                                               BENEFIT OF THE PROJECT

  1. There is a greater sense of security due to the fact that patrons do not actually walk to and from their own space.
  2. It is highly feasible for extremely small sites that are unable to accommodate a conventional ramped parking structure.

iii. There is high parking efficiency

  1. There is no need for driving while looking for an available space.
  2. Emissions are greatly brought down and reduced.
  • The patrons wait for their car in a highly controlled environment.
  • There are less chances for vehicle vandalism.
  1. There is a minimal staff requirement if it is used by known parkers.

1.9                                         METHODOLOGY

To achieve the aim and objectives of this work, the following are the steps involved:

  1. Study of the previous work on the project so as to improve it efficiency.
  2. Draw a block diagram.
  • Test for continuity of components and devices,
  1. programming of microcontroller
  2. Design and calculation for the changeover was carried out.
  3. Studying of various component used in circuit.
  • Construct a digital changeover circuit.
  • Finally, the whole device was cased and final test was carried out.

1.10                                                      PROJECT ORGANISATION

The work is organized as follows: chapter one discuses the introductory part of the work, chapter two presents the literature review of the study, chapter three describes the methods applied, chapter four discusses the results of the work, chapter five summarizes the research outcomes and the recommendations.

 

SHARE PROJECT MATERIALS ON:

More About Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller Material

Author: See the writer of ‘Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller’ name on the first page of the downloaded file.

Acknowledgement: You must acknowledge and reference the writer of Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller on your acknowledgement and reference pages respectively.

Upload Similar: You can upload any content similar to Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller and get paid when someone downloaded the material.

Download: Click on “Donate & Download” under this Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller Title and you will be redirected to download page after the donation or chat with Us for alternative methods.

Content Size: Design And Construction Of An Automatic Car Parking Slot Indicator Using Microcontroller contains , and .