Download Complete Design And Construction Of A Microcontroller Based 12V/30A Car Battery Charger Research Materials (PDF/DOC)
ABSTRACT
This project is on a microcontroller based 12V/30A battery charger. The Automatic Battery Charger circuit presented in this work can automatically charge a 12V at a current of 30A. Special features of the charger are as follows. It automatically controls the charging current as per the status of the battery. Battery voltage level as well as charging status are indicated on the LCD display. The charger maintains float voltage, if battery is fully charged. Arduino identifies status of the battery connection and voltage, and indicates the same on the LCD.
TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
- INTRODUCTION
- BACKGROUND OF THE STUDY
- PROBLEM STATEMENT
- AIM/OBJECTIVES OF THE PROJECT
- SIGNIFICANCE OF THE PROJECT
- APPLICATION OF THE PROJECT
- LIMITATION OF THE PROJECT
- SCOPE OF THE PROJECT
- PROJECT WORK ORGANISATION
CHAPTER TWO
- LITERATURE REVIEW
- 1 Review of Related works
- 2 Contribution to Knowledge
- 3 Proposed system’s Theories
- 4 Expected Results from Hardware &Software
CHAPTER THREE
3.0 CONSTRUCTION METHODOLOGY
3.1 BLOCK DIAGRAM OF THE SYSTEM
3.2 CIRCUIT DIAGRAM
3.3 CIRCUIT DESCRIPTION AND OPERATION
3.5 SOFTWARE USED
CHAPTER FOUR
4.1 RESULT ANALYSIS
4.1 CONSTRUCTION PROCEDURE AND TESTING
4.2 CASING AND PACKAGING
4.3 ASSEMBLING OF SECTIONS
4.4 TESTING OF SYSTEM OPERATIONOBSERVATIONS
4.6 PRECAUSION
CHAPTER FIVE
- SUMAMRY
- CONCLUSIONS/SUGGESTIONS
CHAPTER ONE
1.0 INTRODUCTION
- Background of the Study
A battery charger is described as is a device that provides electricity to convert into stored chemical energy for storage in an electrochemical cell by running an electric current through it. [Zhang et al, 2013].
A battery charger consists of a rectifier circuit, power circuit, ripple monitoring, control circuit, regulator circuit.
A Battery charger comes in various designs and voltage. The choice of a particular charger depends largely on the size of battery. Mini battery charger could be used to charge batteries whose voltage is 12 volts.
The battery charge is built in such a way that it delivers a constant value of d.c current into the battery it is charging in the opposite direction from which current flows on the batteries during discharge one cannot successfully design a battery charge without a fundamental understanding of the accumulator because it also makes up the operation according to [Zhang et al, 2013].
This work is aimed at building a digital battery charger which comprises of an arduino and LCD an the major component.
- Problem Statement
There is nothing that is so frustrating and dangerous as when a battery is plugged and at the end it was discovered that the battery did not charge. And nothing is as dangerous as when a battery was fully charged and the owner is not aware of the charging state. This study solve problems such as not knowing when a battery is charging and when it is fully charged which can cause the battery not to charged or to over-charge.
1.3 OBJECTIVES OF THE PROJECT
The main aim of the project is to build an arduinobased battery charger of 30A for a 12V battery. The objectives of the work are:
- To build the prototype of the device
- To automatically controls the charging current as per the status of the battery.
- To display the charging status of the charging battery on the LCD
1.4 SIGNIFICANCE OF THE PROJECT
Using this digital display charger will serve as a means of keeping a battery in good condition in that the charger maintains float voltage, if battery is fully charged. Arduino identifies status of the battery connection and voltage, and indicates the same on the LCD.
Apart from charging batteries, this device can also be used as a battery level monitor due to the battery level and digital display features.
Carrying this work will go along way teaching students how battery charger is been made and the operation of battery charger. This study will also be of great benefit to all users of charger and rechargeable devices in that it will help them to understand how their battery is been charged and how chargers are operated.
1.5 APPLICATION OF THE PROJECT
Battery charger is used in the following devices for the purpose of recharging device batteries:
- It is used in inverter
- It is used in cellphone
- It is used in Solar energy system
- It is used in vehicles
- It is used in an uninterruptible power supply(UPS), etc.
1.6 LIMITATION OF THE PROJECT
The only problem with this device is that it takes longer time to recharge car battery because of the low current output, and it is design only for a 12v battery.
1.7 SCOPE OF THE PROJECT
The scope of this work covers building a digital battery charger that is built around Arduino Uno (Board1), adjustable voltage regulator LM338 (IC1), 12V voltage regulator 7812 (IC2), 16×2 LCD (LCD1) and a few other components. The system automatically controls the charging current as per the status of the battery. Battery voltage level as well as charging status are indicated on the LCD display. The charger maintains float voltage, if battery is fully charged. Arduino identifies status of the battery connection and voltage, and indicates the same on the LCD.
1.8 PROJECT WORK ORGANISATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this work is on the introduction to amicrocontroller based 12V/30A battery charger. In this chapter, the background, significance, objective limitation and problem of amicrocontroller based 12V/30A battery chargerwere discussed.
Chapter two is on literature review of anmicrocontroller based 12V/30A battery charger. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.
CHAPTER FIVE
SUMMARY
Having carefully selected the entire component that are required for the construction of the charger and built according to the circuit diagram we were able to design and construct a workable battery charger.
This charger is not designed for battery whose emf is beyond 12 volts; otherwise the charge output voltage will not be sufficient to carry out any meaniful charging operation.
As with any charger it must be housed in a clean environment and operations should be by will trained individual.
Protective materials should be worn while charging batteries to avoid danger to health as a result of the gassing from the battery as the gas are highly inflammable.
5.3 CONCLUSION/SUGGESTION FOR FURTHER IMPROVEMENT
In the implementation of this project what has proved most difficulties is the selection of the right value of components some were using two diode (the maraine value), in order to have a perfect full wave rectification, we made use of four diodes and the and a functional portable battery is been designed and constructed.
The charger is very single to use, ever to a Longman all he needs is just a little instruction and it will be accustomed to its method of working.
There is still further improvement demanded from use, mostly in the area of building a work complex and functions charger that could charge cells of higher voltage that might ranges to 48 volts and be able to charge move that two or three battery at the sometimes having more that one terminal.
No doubt, the design and construction of this portable charger. Gas thrilled us in order to make things works. In fact, this actually performed us to take even challenges to this kind of coincidence and commitment.
Due to the possibility of this, it has surely put smiles on the face of most people like some motorist who has long been finding it difficult charging there own batteries at their homes and at their convenient time.
Click the button below to INSTANTLY subscribe and download the COMPLETE MATERIAL (PDF/DOC)!
Not What You Are Searching For?
Search another topic here
The abstract section provides a concise summary of the Design And Construction Of A Microcontroller Based 12V/30A Car Battery Charger, including the issue statement, methodology, findings, and conclusion
The introduction section introduces the Design And Construction Of A Microcontroller Based 12V/30A Car Battery Charger by offering background information, stating the problem, aims, research questions or hypotheses, and the significance of the research
The literature review section presents a review of related literature that supports the current research on the Design And Construction Of A Microcontroller Based 12V/30A Car Battery Charger, systematically identifying documents with relevant analyzed information to help the researcher understand existing knowledge, identify gaps, and outline research strategies, procedures, instruments, and their outcomes
The conclusion section of the Design And Construction Of A Microcontroller Based 12V/30A Car Battery Charger summarizes the key findings, examines their significance, and may make recommendations or identify areas for future research
References section lists out all the sources cited throughout the Design And Construction Of A Microcontroller Based 12V/30A Car Battery Charger, formatted according to a specific citation style