The Assembling Of Microwave Oven Complete Project Material (PDF/DOC)
ABSTRACT
Microwave over the years has been discovered to be a very important appliance which is used in many different applications such as telecommunication products, radar detectors, wood curing and drying, and medical treatment of certain diseases.
However, certain of their properties render them ideal for cooking, by far the most common use of microwave energy. Microwaves can pass through plastic, glass, and paper materials; metal surfaces reflect them, and foods (especially liquids) absorb them. A meal placed in a conventional oven is heated from the outside in, as it slowly absorbs the surrounding air that the oven has warmed. Microwaves, on the other hand, heat food much more quickly because they penetrate all layers simultaneously. Inside a piece of food or a container filled with liquid, the microwaves agitate molecules, thereby heating the substance.
Assembling of the Microwave oven is a way to achieve specific goal, and also in order for each component to communicate with each other. Each of the process/stages involved in the assembling of this project is explained in this write up.
CHAPTER ONE
1.0 INTRODUCTION
Microwaves are actually a segment of the electromagnetic wave spectrum, which comprises forms of energy that move through space, generated by the interaction of electric and magnetic fields. The spectrum is commonly broken into subgroups determined by the different wavelengths (or frequencies) and emission, transmission, and absorption behaviors of various types of waves. From longest to shortest wavelengths, the spectrum includes electric and radio waves, microwaves, infrared (heat) radiation, visible light, ultraviolet radiation, X-rays, gamma rays, and electromagnetic cosmic rays. Microwaves have frequencies between approximately .11 and 1.2 inches (0.3 and 30 centimeters)
The term “microwaves” seems to have first appeared in writing in a 1932 paper by Nello Carrara in the first issue ofAlta Frequenza. The Italian word is microonde. The term gained acceptance during the second world war to describe wavelengths less than about 30 cm. These waves were much shorter than those normally used for communications (at that time), but were being used in RADAR.
A 30 centimeter wavelength is equivalent to 1 GHz (to convert from frequency to wavelength, just divide the speed of light 300,000,000 meters per second by the frequency in cycles per second to get meters of wavelength).
1.1 HISTORY OF MICROWAVE
Like many of today’s great inventions, the microwave oven was a by-product of another technology. It was during a radar-related research project around 1946 that Dr. Percy Spencer, a self-taught engineer with the Raytheon Corporation, noticed something very unusual. He was testing a new vacuum tube called a magnetron when he discovered that the candy bar in his pocket had melted. This intrigued Dr. Spencer, so he tried another experiment. This time he placed some popcorn kernels near the tube and, perhaps standing a little farther away, he watched with an inventive sparkle in his eye as the popcorn sputtered, cracked and popped all over his lab.
The next morning, Scientist Spencer decided to put the magnetron tube near an egg. Spencer was joined by a curious colleague, and they both watched as the egg began to tremor and quake. The rapid temperature rise within the egg was causing tremendous internal pressure. Evidently the curious colleague moved in for a closer look just as the egg exploded and splattered hot yoke all over his amazed face.
This Research Work On “Assembling Of Microwave Oven” Complete Material Can Be Downloaded Through Whatsapp, Email Or Download Link. Click The Below Button To Proceed:
This study on the Assembling Of Microwave Oven is solely for academic research purposes only and should be used as a research guideline or source of ideas. Copying word-for-word or submitting the entire project work to your school is unethical academic behavior and “UniProjects” is not part of it.