Design And Construction Of A Digital Frequency Comparator

Overview

ABSTRACT

A digital frequency comparator circuit comprising two counters connected to a circuit to be driven, in which one of the two counters which earlier issues an output signal is temporarily held, and both the counters are not cleared until the other counter subsequently issues an output signal, whereby an instability in the operation of the circuit to be driven is eliminated.

In this work, digital frequency comparator for oscillators indicates the result through a 7-segment display and a light-emitting diode (LED). When the frequency count of an oscillator is below ‘8,’ the corresponding LED remains turned off. As soon as the count reaches ‘8,’ the LED turns on and the 7-segment display shows ‘8.’

TABLE OF CONTENTS

TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

TABLE OF CONTENT

CHAPTER ONE

1.0      INTRODUCTION

1.1      BACKGROUND OF THE PROJECT
1.2      AIM OF THE PROJECT
1.3      OBJECTIVE OF THE PROJECT
1.4      SIGNIFICANCE OF THE PROJECT
1.5      PURPOSE OF THE PROJECT
1.6      APPLICATION OF THE PROJECT
1.7      ADVANTAGES OF THE PROJECT
1.8      PROBLEM/LIMITATION OF THE PROJECT
1.9      PROJECT ORGANISATION

CHAPTER TWO

2.0     LITERATURE REVIEW

2.1      REVIEW OF RELATED STUDIES

2.2      REVIEW OF RELATED TERMS

CHAPTER THREE

3.0     CONSTRUCTION METHODOLOGY

3.1      SYSTEM CIRCUIT DIAGRAM

3.2     SYSTEM OPERATION

3.3      CIRCUIT DESCRIPTION

3.4      SYSTEM CIRCUIT DIAGRAM

3.5      CIRCUIT OPERATION

3.6      IMPORTANCE AND FUNCTION OF THE MAJOR COMPONENTS USED IN THIS CIRCUIT

3.7      POWER SUPPLY UNIT

CHAPTER FOUR

RESULT ANALYSIS

4.0      CONSTRUCTION PROCEDURE AND TESTING

4.1      CASING AND PACKAGING

4.2      ASSEMBLING OF SECTIONS

4.3      TESTING

4.4.1 PRE-IMPLEMENTATION TESTING

4.4.2  POST-IMPLEMENTATION TESTING

4.5      RESULT

4.6      COST ANALYSIS

4.7      PROBLEM ENCOUNTERED

CHAPTER FIVE

5.1      CONCLUSION

5.2      RECOMMENDATION

5.3      REFERENCES

Digital Frequency Comparator Circuit

This demo circuit uses two NE555 timers configured as astable free-running oscillators, whose frequencies are to be compared.

The circuit of the digital frequency comparator portion comprises two 74LS90 decade counter ICs (IC2 and IC6), two 74LS47 7-segment display driver ICs (IC3 and IC7), 74LS74 set/reset flip-flop (IC4), 74LS00 NAND gate (IC8) and two 7-segment displays (DIS1 and DIS2). The astable free-running oscillators built around the timers are the frequency sources for the corresponding counters.

Circuit operation

When power supply to the circuit is switched on, timing capacitor C1 starts charging through resistor R1 and potmeter VR1. As the capacitor voltage reaches 2/3Vcc, the internal comparator of IC1 triggers the flip-flop and the capacitor starts discharging towards ground though VR1. When the capacitor voltage reaches 1/3Vcc, the lower comparator of IC1 is triggered and the capacitor starts charging again. The charge-discharge cycle repeats. That means, the capacitor charges and discharges periodically between two-third and one-third of the power supply (Vcc). The output of NE555 is high during charging and low during discharging of capacitor C1.

Digital Frequency Comparator Circuit

The other oscillator (IC5) works similarly. The oscillator frequency can be varied by the potentiometer (VR1 or VR2). Output pins (pin 3) of the oscillators (IC1 and IC5) are connected to the respective decade counters (IC2 and IC6) through the DPDT switch.

IC2 and IC6 count the initial eight cycles. IC 74LS90 is a 4-bit ripple decade counter. It consists of a divide-by-two section and a divide-by-five section counter. Each section has a separate clock input. The input of the divide-by-five section (CP1) is externally connected to the P output (pin 12) of the divide-by-two section (CP0). When the divide-by-two section receives clock pulse, it becomes a divide-by-ten counter.

Decade counter 74LS90 is reset by a high pulse at its pins 2 and 3. Initially, pins 2 and 3 are pulled down by resistor R2. The P through S outputs of IC2 are connected to the A through D inputs of IC3. Pin 11 (S) of IC2 is also connected to pin 3 of IC4(A) for providing the clock pulse. The count is displayed on the 7-segment display.

Display

The 7-segment decoder/driver (74LS47) accepts four binary-coded decimals (8421), generates their complements internally and decodes the data with seven AND/OR gates having the open-collector output to drive the display segments directly. Each segment-driver output is capable of sinking 40mA current in the ‘on’ state. Pins 3, 4 and 5 of the display driver are connected to Vcc to disable the ripple-blanking input (RBI), blanking input (BI)/ripple-blanking output (RBO) and lamp test (LT).

IC3 provides segment data to the 7-segment display through current-limiting resistors R3 through R9 (each 220 ohms).

IC 74LS74 (IC4) controls the reset pin (RST) of NE555. It is a dual D-type flip-flop with direct clear and set inputs and complementary outputs. The input data is transferred to the outputs on the positive edge of the clock pulse. Since the Q output is connected to the data input D, the flip-flops work in toggle mode.

Circuit application

Initially, reset pins 1 and 13 of the flip-flops are pulled high via resistor R10. When the reset pin of any flip-flop receives a low pulse from NAND gate N2 of IC8, the flip-flop is reset and its Q output goes high. On receiving a clock pulse, the Q and Q outputs of the flip-flop go high and low, respectively, and the LED turns on. The low output of IC4 resets the oscillators. The reset signal is derived with the help of NAND gates N3 and N4.

When switch S2 is pressed, both the oscillators and the respective counters start working. As soon as any of the counters counts ‘8,’ the corresponding display shows ‘8’ and LED glows. This means that oscillator has a higher frequency. Now both the counters stop counting because the flip-flop output goes low to reset both the astable oscillators.

In case the frequencies of both the astable oscillators are same, both the displays show ‘8’ and LED1 and LED2 glow at the same time.

 

Chapter Two: Literature Review

2.0 INTRODUCTION:

This chapter provides the background and context of the research problems, reviews the existing literature on the Design And Construction Of A Digital Frequency Comparator, and acknowledges the contributions of scholars who have previously conducted similar research [REV64909] …

Document Information

    • Format: DOC/PDF
    • Title: Design And Construction Of A Digital Frequency Comparator:

YOU MAY LOVE THESE (Recommended)

  • To start a project on Study Of Impact Of Frequency Deviation On Power System, follow these guidelines: The operation and the development of power system networks introduce new types of stability problems.  The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand …

    62 Pages 1 - 5 Chapters 11,700 Words DOC/PDF Format Instant Download UPN65119

  • Techniques for writing the “Design And Fabrication Of A Solar Powered Digital Street Clock” Project

    To develop a project on Design And Fabrication Of A Solar Powered Digital Street Clock, follow these approaches: The design of the PIC microcontroller LED clock consists of few components that implement a solar powered digital street clock using LED display pattern. In this paper the LED clock was designed with 12 red LEDs in the outer circle, 12 green LEDs in the inner circle and four centralized yellow LE…

    42 Pages 1 - 5 Chapters 7,536 Words DOC/PDF Format Instant Download UPN66087

  • Writing strategies for the “Implementation Of GSM Based Digital Display Billboard” Project

    To undertake a project on Implementation Of GSM Based Digital Display Billboard, follow these effective ways: This work is on “GSM Based Digital Display Bill Board” which can be used by institution, organization or any commercial establishment to display new event or activity to the public. It utilizes GSM, LED and microcontroller to display information. Hence, this project aims at achieving the above p…

    67 Pages 1 - 5 Chapters 8,989 Words DOC/PDF Format Instant Download UPN66054

  • To write a project on Digital Skills And Information Service Delivery In University Libraries, follow these structure: This study was carried out to examine digital skills and information service delivery in university libraries in Akwa Ibom State. Specifically, the study ascertain the digital skills required for information service delivery in university libraries in Akwa Ibom State, determine the library servic…

    62 Pages 1 - 5 Chapters 15,041 Words DOC/PDF Format Instant Download UPN81191

  • Guide for writing the “Digital Incubator” Project

    INTRODUCTION Incubator has variety of applications but it has only one meaning, incubator is an apparatus consist of a box designed to maintain a constant temperature by the use of a thermoctal or thermictor; used for chicks or premature infants. Synoaym: brooder: it is an apparatus consisting of a box designed to maintain a constant temperature by the use of a thermostat; used for chicks or premature infants. In the business world, an […]

    44 Pages 1 - 5 Chapters 5,381 Words DOC/PDF Format Instant Download UPN63997

  • To carry out a project on Detection Of Power Grid Synchronization Failure On Sensing Frequency And Voltage Beyond Acceptable Range, follow these effective methods: The project is designed to develop a system to detect the synchronization failure of any external supply source to the power grid on sensing the abnormalities in frequency and voltage. There are several power generation units connected to the grid such as hydro, thermal, solar etc. to supply powe…

    33 Pages 1 - 5 Chapters 5,680 Words DOC/PDF Format Instant Download UPN64894

  • To start a project on Design And Construction Of Mini Radio Broadcast Transmitter And Audio Console Using Frequency Modulation Fm With Power Rating Of 1 Watt, follow these guidelines: The early transmitter for radio broadcasting is so big and bulky that they do occupy numerous spaces. The circuitries are mainly designed with valves, which are big in sizes. With the advent of semiconductor materials such as transistors electronic equipment are now becoming miniaturized such tha…

    90 Pages 1 - 7 Chapters 8,262 Words DOC/PDF Format Instant Download UPN64010

  • To develop a project on Design And Construction Of Microcontroller Based Digital Combinational Lock System, follow these approaches: Due to the advancement in science and technology all over the world, there is a significant increase in the rate of crime and sophistication in crimes; as a result, it is necessary to ensure the security of one’s self and one’s valuable belongings. The main goal of this paper is aimed at creating…

    59 Pages 1 - 5 Chapters 7,147 Words DOC/PDF Format Instant Download UPN64745

  • To undertake a project on Design And Construction Of An Automatic Gate Using Radio Frequency Transmission, follow these effective ways: The security challenges being encountered in many places require electronic means of controlling access to communities, recreational centres, offices, and homes. The electronically controlled automated security access gate being proposed in this work helps to prevent an unwanted access to control…

    47 Pages 1 - 5 Chapters 6,192 Words DOC/PDF Format Instant Download UPN65559

  • INTRODUCTION 1.1 BACKGROUND OF THE STUDY A mobile phone jammer or signal blocker is an instrument used to prevent cellular phones from receiving signals from base stations. The process of blocking the receiver to receive a transmitted signal is called Jamming of the signal. The jammer effectively disallows cellular phone signal when activated. These devices can be used in practically any location, but are found primarily in places wher […]

    46 Pages 1 - 5 Chapters 6,975 Words DOC/PDF Format Instant Download UPN64101

Live Chat