Design And Construction Of An Infrared Interruption Counter

The design and construction of an infrared interruption counter involves the utilization of infrared (IR) technology to detect interruptions in an infrared beam, typically emitted by an IR transmitter and received by an IR receiver. This system consists of several components, including the transmitter, receiver, control unit, and display interface. The IR transmitter emits a continuous beam towards the receiver, which is positioned opposite to it. When an object interrupts this beam, such as a person passing through, the receiver detects the interruption and sends a signal to the control unit. The control unit processes the signal and increments the count accordingly. To ensure accuracy and reliability, the design may incorporate features such as adjustable sensitivity settings, ambient light filtering, and error detection mechanisms. The construction involves assembling these components into a robust enclosure, incorporating power supply provisions, and implementing user-friendly interfaces for configuration and monitoring. By optimizing the design for durability, sensitivity, and ease of use, this infrared interruption counter can find applications in various settings, including pedestrian traffic monitoring, industrial automation, and security systems, enhancing efficiency and productivity while providing valuable data insights.

 

ABSTRACT

Most optical interruption counters make use of a light bulb with light-dependent resistor (LDR) or ordinary phototransistor as the sensor. The interruption counter work satisfactorily in darkness only and cannot be used outdoors because of the chances of false counting due to light sensed from other light sources like sun, light bulb, etc.

This device uses an infrared (IR) sensor that can sense a particular modulated frequency of infrared beam. A small transmitter circuit employing an IR LED is used to emit modulated IR signals.

TABLE OF CONTENTS

TITLE PAGE

APPROVAL PAGE

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

TABLE OF CONTENT

CHAPTER ONE

1.0      INTRODUCTION

1.1      BACKGROUND OF THE PROJECT
1.2      AIM OF THE PROJECT
1.3      OBJECTIVE OF THE PROJECT
1.4      SIGNIFICANCE OF THE PROJECT
1.5      PURPOSE OF THE PROJECT
1.6      APPLICATION OF THE PROJECT
1.7      ADVANTAGES OF THE PROJECT
1.8      PROBLEM/LIMITATION OF THE PROJECT
1.9      PROJECT ORGANISATION

CHAPTER TWO

2.0     LITERATURE REVIEW

2.1      REVIEW OF RELATED STUDIES

2.2      REVIEW OF RELATED TERMS

2.3      OVERVIEW OF AN INFRARED

CHAPTER THREE

3.0     CONSTRUCTION METHODOLOGY

3.1      SYSTEM CIRCUIT DIAGRAM

3.2     SYSTEM OPERATION

3.3      CIRCUIT DESCRIPTION

3.4      SYSTEM CIRCUIT DIAGRAM

3.5      CIRCUIT OPERATION

3.6      IMPORTANCE AND FUNCTION OF THE MAJOR COMPONENTS USED IN THIS CIRCUIT

3.7      POWER SUPPLY UNIT

CHAPTER FOUR

RESULT ANALYSIS

4.0      CONSTRUCTION PROCEDURE AND TESTING

4.1      CASING AND PACKAGING

4.2      ASSEMBLING OF SECTIONS

4.3      TESTING

4.4.1 PRE-IMPLEMENTATION TESTING

4.4.2  POST-IMPLEMENTATION TESTING

4.5      RESULT

4.6      COST ANALYSIS

4.7      PROBLEM ENCOUNTERED

CHAPTER FIVE

5.1      CONCLUSION

5.2      RECOMMENDATION

5.3      REFERENCES

Infrared interruption counter

The interruption counter described here uses an infrared (IR) sensor that can sense a particular modulated frequency of infrared beam. A small transmitter circuit employing an IR LED is used to emit modulated IR signals.

Fig. 1: Block diagram of infrared interruption counter Fig. 2: Power supply circuit Fig. 3: IR transmitter circuit

The block diagram of the infrared interruption counter providing an overview of the system is shown in Fig. 1. The astable multivibrator produces 36kHz frequency and npn transistor BC547 drives the IR LED to transmit the modulated infrared signal. The transmitted IR signal continuously falls on the IR sensor (receiver).

When somebody crosses the path of the IR beam falling on the sensor, the triggering circuit activates to trigger the monostable multivibrator. The output of the monostable advances the count of the 4-digit counter-cum-display driver to display the count on 7-segment, common-cathode displays.

Circuit description

The infrared interruption counter circuit consists of power supply, transmitter and infrared interruption counter stages.

Power supply

Fig. 2 shows the power supply circuit. The AC mains is stepped down by transformer X1 to deliver secondary output of 9V at 500 mA. The transformer output is rectified by a full-wave bridge rectifier comprising diodes D1 through D4, filtered by capacitors C3 and C4, and regulated by IC 7805 (IC1) to provide regulated 5V supply for the transmitter and infrared receiver-cum-counter stages. Capacitor C5 bypasses any ripple in the regulated output.

Transmitter stage

The transmitter circuit (see Fig. 3) works off 5V regulated supply. It is built around timer NE555 (IC2), npn transistor BC547, IR LED1 and some resistors and capacitors.

Fig. 4: Circuit of infrared interruption counter

Timer NE555 is wired as an astable multivibrator whose frequency is set at 36 kHz by adjusting preset VR1. The npn transistor (T1) is used to drive IR LED1, which can transmit modulated IR signals up to around 7 metres without any lense arrangement.

Infrared interruption counter stage. The IR interruption counter circuit (Fig. 4) is built around IR receiver TSOP1736 (IRX1) utilising timer NE555 (IC3), 4-digit counter-cum-display driver IC 74C926 with multiplexed 7-segment output drivers (IC4), 7-segment common-cathode displays DIS1 through DIS4, BC547 npn transistors and some discrete components.

Fig. 5: Internal pin configuration of IC 74C926 Fig. 6: Audible beeper (optional)

IR sensor TSOP1736 is readily available in the market. It is commonly used in TV sets as a miniaturised receiver for IR remote control systems. Fig. 5 shows the internal functional block diagram and pin configuration of IC 74C926.

IR receiver module TSOP 1736 is meant for pulsed operation. When it is exposed to continuous 36kHz modulated IR beam, its output remains high and the collector of transistor T2 is held low. During a brief interruption of the IR beam, a low-to-high-to-low pulse appears at the collector of transistor T2 to trigger the monostable formed by IC3. The monostable multivibrator is set for a time delay of nearly half second. The 4-digit counter with multiplexed 7-segment output drivers (IC 74C926) advances by one digit for every clock pulse received from the multivibrator. It can count up to ‘9999.’ The counter can be reset to zero at any time by pressing the reset microswitch.

Thus the display, at any time, shows the count of interruption of the IR beam since the last reset. The interruption counter can be employed as visitor counter or object counter in industrial applications.

Fig. 7: Single-side PCB for IR transmitter Fig. 8: Components layout for the PCB in Fig. 7

You can add a beeper circuit, as shown in Fig. 6, to provide an audible indication of each interruption. The output pulse from monostable IC3, generated during an interruption, will activate transistor T7 to drive the piezobuzzer for duration of the monostable pulse.

Construction

A single-side PCB layout for the IR transmitter (Fig. 3) is shown in Fig. 7 and its components layout in Fig. 8, while the combined PCB layout for the interruption counter (Fig. 4), power supply (Fig. 2) and beeper (Fig. 6) is shown in Fig. 9 with its components layout in Fig. 10.

Fig. 9: Single-side combined PCB layout for infrared interruption counter, power supply and beeper Fig. 10: Components layout for the PCB in Fig. 9

Download PCB and component layout PDFs: click here

For easy servicing, use IC bases to mount the ICs on the PCB. After assembling the PCB, place it near the entry gate. Use long wires for connections to the IR transmitter LED and IR receiver TSOP1736 so that these can be taken out of the PCB and mounted on the opposite pillars of the entry gate. The transmitter should be oriented such that the transmitted IR ray directly falls on the receiver module.

 

SHARE PROJECT MATERIALS ON:

More About Design And Construction Of An Infrared Interruption Counter Material

Author: See the writer of ‘Design And Construction Of An Infrared Interruption Counter’ name on the first page of the downloaded file.

Acknowledgement: You must acknowledge and reference the writer of Design And Construction Of An Infrared Interruption Counter on your acknowledgement and reference pages respectively.

Upload Similar: You can upload any content similar to Design And Construction Of An Infrared Interruption Counter and get paid when someone downloaded the material.

Download: Click on “Donate & Download” under this Design And Construction Of An Infrared Interruption Counter Title and you will be redirected to download page after the donation or chat with Us for alternative methods.

Content Size: Design And Construction Of An Infrared Interruption Counter contains , and .