The Design And Construction Of A Smart Street Lighting System Using Ultrasonic Sensor (PDF/DOC)
ABSTRACT
Generally, street lights are switched ON for whole night and during the day, they are switched off. But during the night time, street lights are not necessary if there is no traffic. Saving of this energy is very important factor these days as energy resources are getting reduced day by day. Alternatives for natural resources are very less and our next generations may face lot of problems because of lack of these natural resources. Smart street lighting system works automatically to regulate light intensity, the operating time and detect objects.
The system requires a micro controller, some ultrasonic sensors and a battery for making the entire idea functional. The ultrasonic sensors that are responsible for detection of an obstacle would be manually placed on the street light poles, on detection of an obstacle; they would send electrical signals to the central sensor box consisting of micro controller. The micro controller that would be powered by a battery source will then eventually turn on the street lights of the location where the obstacle is detected.
TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
- INTRODUCTION
- PROBLEM STATEMENT
- AIM/OBJECTIVE OF THE PROJECT
- SIGNIFICANCE OF THE PROJECT
- SCOPE OF THE PROJECT
- LIMITATION OF THE PROJECT
- APPLICATION OF THE PROJECT
- BENEFIT OF THE PROJECT
- PURPOSE OF THE PROJECT
- METHODOLOGY
- PROJECT ORGANIZATION
CHAPTER TWO
LITERATURE REVIEW
2.0 LITERATURE REVIEW
2.1 REVIEW OF HISTORY OF LIGHTING
2.3 REVIEW AND DESCRIPTION OF LED LIGHT
2.4 HEALTH CONCERNS ABOUT LED LIGHTS
2.5 REVIEW OF ADVANTAGES OF LED LIGHTS
2.6 DISADVANTAGES OF LED LIGHTS
2.7 REVIEW OF THE RELATED WORK
2.8 PROPOSED SYSTEM
2.9 TYPES OF LAMPS USED FOR STREET LIGHTING
CHAPTER THREE
3.0 CONSTRUCTION METHODOLOGY
3.1 SYSTEM BLOCK DIAGRAM
3.2 CIRCUIT DIAGRAM
3.3 SYSTEM WORKING
3.4 CIRCUIT DESCRIPTION
3.4 SYSTEM OPERATION
3.5 COMPONENTS LIST
3.6 DESCRIPTION OF MAJOR COMPONENTS USED
3.7 SYSTEM ARCHITECTURE AND FLOW CHART
CHAPTER FOUR
4.0 RESULT ANALYSIS
4.1 CONSTRUCTION PROCEDURE AND TESTING
4.2 ASSEMBLING OF SECTIONS
4.3 CONSTRUCTION OF THE CASING
4.4 TESTING
4.5 HOW TO TEST THE DEVICE
4.6 RESULT
CHAPTER FIVE
- CONCLUSIONS
5.2 REFERENCES
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
The idea behind the design of this system is to make available the require illumination in our roads for nighttime events, security, and beautification. This goes a long way in helping to curb the problem frequently encountered as a result of darkness during nighttime such as thieves, arm robbers operations or wide animals approaching our homes during night hours.
A street lighting is any electrical lighting that is fixed outside house for the illumination of such environment or a Street light is a raised source of light on the edge of a road or walkway, which is turned on or lit at a certain time every night. This device was built around ultrasonic sensor.
Smart street lighting system works automatically to regulate light intensity, the operating time and detect objects. This system is designed to integrate the microcontroller arduino with ultrasonic sensors,
Ultrasonic sensors are based on measuring the properties of sound waves with frequency above the human audible range. They are based on three physical principles: time of flight, the Doppler effect, and the attenuation of sound waves. Ultrasonic sensors are non-intrusive in that they do not require physical contact with their target, and can detect certain clear or shiny targets otherwise obscured to some vision-based sensors. On the other hand, their measurements are very sensitive to temperature and to the angle of the target.
Ultrasonic sensors “are based on the measurement of the properties of acoustic waves with frequencies above the human audible range,” often at roughly 40 kHz. They typically operate by generating a high-frequency pulse of sound, and then receiving and evaluating the properties of the echo pulse.
1.2 PROBLEM STATEMENT
Lack of natural light during nighttime in the urban environment was always a problem due to natural law – light in the day and darkness at night. From basic inconvenience that people cannot see where they are going to the greater chance of being attacked or mugged during the night. Street light came to bring solution to this problem, street light electrifies our environment for easy and clear access and also add beauty to it.
1.3 OBJECTIVE OF THE PROJECT
The project aims at curbing the power losses in the street lamps during the night time. It is based on the ultrasonic sensor and microcontroller ATmega32
1.4 SIGNIFICANCE OF THE PROJECT
Major significance of street lighting includes: prevention of accidents and increase in safety. Studies have shown that darkness results in a large number of crashes and fatalities, especially those involving pedestrians; pedestrian fatalities are 3 to 6.75 times more likely in the dark than in daylight. Street lighting has been found to reduce pedestrian crashes by approximately 50%.
Furthermore, lighted intersections and highway interchanges tend to have fewer crashes than unlighted intersections and interchanges.
Towns, cities, and villages use the unique locations provided by lampposts to hang decorative or commemorative banners.
In design of street light for industrial applications, ultrasonic sensors are characterized by their reliability and outstanding versatility. Ultrasonic sensors can be used to solve even the most complex tasks involving object detection or level measurement with millimeter precision, because their measuring method works reliably under almost all conditions.
No other measuring method can be successfully put to use on such a wide scale and in so many different applications. The devices are extremely robust, making them suitable for even the toughest conditions. The sensor surface cleans itself through vibration, and that is not the only reason why the sensor is insensitive to dirt. The physical principle—the propagation of sound—works, with a few exceptions, in practically any environment. Ultrasonic sensors have proven their reliability and endurance in virtually all industrial sectors when used in street light.
If the lighting system implements all LED lights, the cost of the maintenance can be reduced as the life span and durability of LEDs is higher than Neon based lights which are normally used as street lights.
As the lights are automatically turned ON or OFF, dim or full, huge amount of energy can be saved.
1.5 PURPOSE OF THE STUDY
The main purpose of this work is that it saves energy by putting on the lights of the system only when the system detects movement of vehicle. The system switches on the street light ahead of the vehicle and switches off the trailing lights simultaneously
1.6 APPLICATION OF THE PROJECT
There are four distinct main uses of street lights, each requiring different types of lights and placement. Misuse of the different types of lights can make the situation worse by compromising visibility or safety.
Beacon lights
A modest steady light at the intersection of two roads is an aid to navigation because it helps a driver see the location of a side road as they come closer to it and they can adjust their braking and know exactly where to turn if they intend to leave the main road or see vehicles or pedestrians. A beacon light’s function is to say “here I am” and even a dim light provides enough contrast against the dark night to serve the purpose. To prevent the dangers caused by a car driving through a pool of light, a beacon light must never shine onto the main road, and not brightly onto the side road. In residential areas, this is usually the only appropriate lighting, and it has the bonus side effect of providing spill lighting onto any sidewalk there for the benefit of pedestrians. On Interstate highways this purpose is commonly served by placing reflectors at the sides of the road.
Roadway lights
Conventional streetlights are used instead of high mast lighting near airport runway approaches due to the negative effects they cause.
Street light are not normally intended to illuminate the driving route (headlights are preferred), but to reveal signs and hazards outside of the headlights’ beam. Because of the dangers discussed above, roadway lights are properly used sparingly and only when a particular situation justifies increasing the risk. This usually involves an intersection with several turning movements and much signage, situations where drivers must take in much information quickly that is not in the headlights’ beam. In these situations (A freeway junction or exit ramp) the intersection may be lit so that drivers can quickly see all hazards, and a well designed plan will have gradually increasing lighting for approximately a quarter of a minute before the intersection and gradually decreasing lighting after it. The main stretches of highways remain unlighted to preserve the driver’s night vision and increase the visibility of oncoming headlights. If there is a sharp curve where headlights will not illuminate the road, a light on the outside of the curve is often justified.
If it is desired to light a roadway (perhaps due to heavy and fast multi-lane traffic), to avoid the dangers of casual placement of street lights it should not be lit intermittently, as this requires repeated eye readjustment which implies eyestrain and temporary blindness when entering and leaving light pools. In this case the system is designed to eliminate the need for headlights. This is usually achieved with bright lights placed on high poles at close regular intervals so that there is consistent light along the route. The lighting goes from curb to curb.
Street light control systems
A number of street light control systems have been developed to control and reduce energy consumption of a town’s public lighting system. These range from controlling a circuit of street lights and/or individual lights with specific ballasts and network operating protocols. These may include sending and receiving instructions via separate data networks at high frequency over the top of the low voltage supply or wireless.
Image-based street light control
A number of companies are now manufacturing Intelligent street lighting that adjust light output based on usage and occupancy, i.e. automating classification of pedestrian versus cyclist, versus automotive, sensing also velocity of movement and illuminating a certain number of streetlights ahead and fewer behind, depending on velocity of movement. Also the lights adjust depending on road conditions, for example, snow produces more reluctance therefore reduced light is required.
Military use
From a military standpoint, lighting is a critical part of the battlefield conditions. Shadows are good places to hide, while bright areas are more exposed. It is often beneficial to fight with the Sun or other light source behind you, giving your enemy disturbing visual glare and partially hiding your own movements in back light. If natural light is not present searchlights and flares can be used. However the use of light may disclose your own hidden position and modern warfare have seen increased use of night vision through the use of infrared cameras and image intensifiers.
Flares can also be used by the military to mark positions, usually for targeting, but laser-guided and GPS weapons have eliminated this need for the most part.
- The street light control circuit can be used in normal roads, highways, express ways etc.
- The project can also be used in parking areas of malls, hotels, industrial lighting,
1.7 BENEFIT OF THE PROJECT
Major advantages of street lighting includes: prevention of accidents and increase in safety. Studies have shown that darkness results in a large number of crashes and fatalities, especially those involving pedestrians; pedestrian fatalities are 3 to 6.75 times more likely in the dark than in daylight. External lighting has been found to reduce pedestrian crashes by approximately 50%.
Furthermore, lighted intersections and highway interchanges tend to have fewer crashes than unlighted intersections and interchanges. Towns, cities, and villages use the unique locations provided by lampposts to hang decorative or commemorative banners.
1.7 SCOPE OF THE PROJECT
Project deals with making a smart street light that would enable itself when it comes in contact with an obstacle i.e. a vehicle for an instance, and turn off when there is nobody around. The system requires an microcontroller, some ultrasonic sensors and a battery for making the entire idea functional. The ultrasonic sensors that are responsible for detection of an obstacle would be manually placed on the street light poles, on detection of an obstacle; they would send electrical signals to the central sensor box consisting of microcontroller. The microcontroller that would be powered by a battery source will then eventually turn on the street lights of the location where the obstacle is detected.
1.8 LIMITATION OF THE PROJECT
The only problem noticed in this work is that the intelligent operation of the system may stop working as soon as the sensor got spoiled.
1.9 METHODOLOGY
To achieve the aim and objectives of this work, the following are the steps involved:
- Study of the previous work on the project so as to improve it efficiency.
- Draw a block diagram.
- Test for continuity of components and devices,
- Design of was carried out.
- Studying of various component used in circuit.
- Construct the circuit.
- Finally, the whole device was cased and final test was carried out.
1.10 PROJECT WORK ORGANIZATION
The various stages involved in the development of this project have been properly put into five chapters to enhance comprehensive and concise reading. In this project thesis, the project is organized sequentially as follows:
Chapter one of this work is on the introduction to this study. In this chapter, the background, significance, objective limitation and problem of this study were discussed.
Chapter two is on literature review of this study. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.
Click the button below to INSTANTLY subscribe and download the COMPLETE MATERIAL (PDF/DOC)!